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ABSTRACT 
We study the large time behaviour of nonnegative solutions of the Cauchy 
problem u, = Aum - u " ,  u (x ,0 )=  ~b(x). Specifically we study the influence of 
the rate of decay of ~b(x) for large Ix I, and the competition between the 
diffusion and the absorption term. 

1. Introduction 

We consider the Cauchy problem 

(1.1) f u, =A(um)--U" in RN ×(0,oo), 

(i) 
(1.2) u(x,0) = 4,(x) in R N, 

in which m _-> 1, p > 1, N => 1 and 4, is a given bounded nonnegative function. 

The existence and uniqueness of a nonnegative bounded solution u of 

Problem I - -  defined in some weak sense - -  is well established [4, 13]. 

In this paper we are interested in the behaviour of u(x, t) as t---~ oo and how 

this is determined by 

(i) the competition between the diffusion and the absorption term; 

(ii) the asymptotic behaviour of 4,(x) as Ix I---~ oo. 

To specify the asymptotic behaviour of 4' we introduce a parameter  a > 0 

through the hypothesis 

lim Ix l~4,(x)= A 
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where A is a positive number and the limit is taken in a distributional sense (see 

section 2). 

For m = 1, these questions have been discussed by Gmira and Veron [121, 

Kamin and Peletier [15, 16], Kamin and Ughi [17] and Escobedo and Kavian [9]. 

For that case the situation is conveniently described by the diagram given in Fig. 

1. For the various regions in the p-a  plane the large time behaviour of u(x, t) is 

as follows. 

( p , a ) E I  [121: 

tl/(P-1)U(X, t)---~ C* a s  t----~ oo 

where c* = (t/(p - 1)) '/~p-'), uniformly on sets of the form 

P~( t )={x~R": lx l<=at  ''21 a>=O, t>=O. 

(p, a) E III [16]: 

t~/2]u(x,t) - W(x,t)]-->O as t ~ o o ,  

uniformly on sets Pa. Here W is the solution of the heat equation with initial 

value W(x, O) = A I x I -~. 

(p ,a)E V [121: 

t"'2[u(x,t)-coE(x,t)l---,O as t---> oo 

uniformly on sets Pa. The function E is the fundamental solution of the heat 

equation and Co is a positive constant which depends on u. 

2 
a = ~-2-i_ 1 

! _ I V I I I  

2 p 
I + - -  

N 

Fig. 1. 
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The case ( p , a ) E V I I  has not been completely solved yet. However, if 

l < p < l + ( 2 / n )  and there exist A > 0 ,  a > 0  so that 

then 

c~(x)<=Ae -aJ~l~ inR", 

t"( ' -" lu(x, t  ) -  Vfx, t)l---~O as t---> oo, 

uniformly in R'. Here V is the - -  unique - -  very singular solution of equation 

(1.1) [6, 9, 15, 181. 

For the borderline cases II, IV, VI and VIII we refer to, respectively, [16], 

[17], [12] and [9]. 

In this paper we shall extend some of these results to the case m > 1. It will be 

necessary to carve up the p-a  plane slightly differently (see Fig. 2). 

We shall give the asymptotic behaviour of u as t ~ ~ for the cases I, III and V. 

For the case VII the situation is not yet clear even for m = 1. On the other hand, 

for case IX the behaviour has already been described in [5]. The borderline cases 

will not be considered either. 

We shall show that 

(a) If (p, a )  E I, then 

tt/te-l)u(x, t)--* c* as t ---, oo 

uniformly in the sets {x E R "  : Ix I<  at'~}, where a _-0 and 

/3 = 2(p - 1)/(p - m). 

2 
ot p -  m 

n . . . . . .  

_•VIII VI V 

_IX_ . . . . .  = _ _ ~  I~/ 

I ~ III II 

v 

2 p 1 m m + -  
N 

Fig. 2. 
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(b) If (p, a)  E III, then 

t ° " l u ( x , t ) - W ( x , t ) l ~ O  as t---~ oo 

uniformly on sets {x ~ R  n : Ix I <  atll'}, where a >--0, 

3' = (m - 1)a + 2 

and W is the solution of the Porous Media Equation 

(1.3) u, = A ( u " )  

with initial value W(x,O) = A I x ]-~. 

(c) If ( p , a ) E  V: 

t ~ /~ lu (x , t ) -Ec , , ( x , t ) l~O  as t ~  

uniformly on sets of the form {x E R n : I x I _<- att/*'}. Here  

8 = m - l + 2 / n  

and Ec,, is the Barenbla t t -Pat t le  solution of the Porous Media Equat ion (1.3) 

with mass Co, and 

ll ,- fo f.. uP(x,t)  dxdt. 

The results obtained above for solutions of Problem I can readily be 

generalized to solutions of the equation 

u, = a ( u ' ) - g ( u )  

in which 

g ( 0 ) = 0  and g ( s ) > 0  f o r s > 0 .  

This is done in the last section. 

Analogous asymptotic estimates for the Porous Media Equation (1.3) have 

been obtained by Alikakos and Rostamian [1]. 

2. Preliminaries 

We shall write R + = (0, oo), S = R ~ x R + and for T > 0 : ST = R" x (0, T] and 

S~= R n x (~-, T] if 0 < z < T. We shall assume that $ > 0 and ~b E L®(R~). 

DEFINITION. By a solution of Problem I on [0, T] we shall mean a nonnega- 

tive function u E L®(Sr) which satisfies the identity 



Vol. 55, 1986 POROUS MEDIA EQUATION 133 

(2.1) f f~T [~,u + A~u" - #uP]dxdt + f~ ~(x,O)ck(x)dx =O 

for any s r E C2"(,gr) which vanishes for large Ix [ and at t = T. 

The existence and uniqueness of such a solution is well established [4, 13]. 

That  it is continuous in ST was shown in [8]. 

To characterize the initial values ~b, we introduce the hypothesis 

(HI)  [xl"c~(x)~a as I x [---* oo 

in which a > 0 and A > 0 and the convergence is understood in the following 

distributional sense: for any X E Co(R"), 

[irn fro X(x)lkxl~(kx)dx=A~R ° X(x)dx. 

In the description of the asymptotic form of the solution at large times, we 

shall encounter  two families of special solutions of the Porous Media Equation 

(1.3). 

(1) The Barenblat t-Patt le  solutions Ec(x, t): 

Ec(x,t)=t_,~{[a2_(m_l)!x [,.]+ } t,(,-,,, 

where [z]÷ = max{0, z}, 8 = m -  1 + (2In) and a is a constant chosen so that 

f, .  Ec (x, t)dx = c > 0 [21. 

(2) The solution WA (x, t) of the problem 

f u, = A ( u ' )  in S, 
(II) 

l u (x, 0) = A [ x I -~ in R" \ {0}, 

where A > 0 and 0 < a < n. The existence and uniqueness of this solution was 

established in [3] (see also [7]). By the symmetry properties of Problem II, WA 

must be of the form 

(2.2) WA (x, t) = t-~/vf(rl;A ), 17 = Ix I/t ''~, 
where y = (m - 1)a + 2 and [ is the solution of the problem 

{ or°)"+" - Or°)' 0, ,7>0, */ 

(m) [_->0 (~0), n >_-0, 

f'(0) = 0, lirn 7/"f(r/, A )  = A. 
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Note that the condition on [ at infinity is required by the initial condition. If 

x ~ 0 we have 

lim WA (x, t) = lim t-~'Yf(rl, A ) 
I~O tJ, O 

= I x [ -~ ~im r/af(r/; a ) 

= a  [xl-'. 

3. Case I 

In this section we assume that 

(3.1) 

and that 4) has the property 

p > m > = l  

(H2) lim Ix 12'(P-"'t~(x) = oo. 

Thus, if 4) satisfies (H1), i.e. r ib (x) -A Ix I -° as Ix I ---~ °°, we assume that 

2 
(3.2) 0 < a < ~ .  

p - m  

THEOREM 1. Suppose m and p satisfy (3.1). Let u be a solution of Problem I in 

which 4) satisfies (H2). Then 

t~l(P-')u(x,t).--, c * as t---,oo 

where c* = (l/(p - 1)) '"~-') uniformly on sets of the form 

where 

{x~R":txl<=at'~}, a>-_O, t>=O 

/ 3 = 2  p - 1  
p - m  

To prove this theorem we define the family of functions 

(3.3) Uk(X, t) = kZl(P-')u(kx, k~t), k > O. 

It is readily seen upon substitution that for every k > O, Uk is a solution of 

Problem I with initial value 

(3.4) tbk (x ) = k z,(~- m)qb (kx ). 
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LEMMA 1. For every k > 0 

uk(x, t)<= c*t -'/(p-') in S 

where c* has been defined in Theorem 1. 

Since c*t -'/~p-~) is a solution of equation (1.1), Lemma 1 follows from the 

Comparison Principle. 

LEMMA 2. There exists a subsequence {uk,} and a function U E C(S) such 
that 

uk(x,t)---> U(x,t)  ask--->oo 

uniformly on compact subsets of S. 

PaooF. The uniform upper bound of Lemma 1 implies, by a result of 

DiBenedetto [8], that the sequence {uk } is equicontinuous on compact subsets of 

S, enabling us to extract a convergent subsequence. 

Lemmas 1 and 2 imply that 

(3.5) U(x, t) <-_ c* t -'I(p-.) in S. 

To obtain a lower bound for U we define for any fixed constant A > 0 the family 

of truncated initial values 

6~(x) = min {6k (x), A}. 

We denote the corresponding solutions of Problem I by v~(x, t). Clearly, by the 

Comparison Principle 

(3.6) v ~(x, t ) <= uk (x, t) 

for every k > 0  and A >0.  

Define the function 

in 

) -i/(p-1), 
VA(x,t)= c* ( t+  (p_ l )AP_ ,  

it is the solution of Problem I which corresponds to the uniform initial value 

¢b(x)=- A. 

LEMMA 3. Let A > O. Then 

v:(x,t)---> VA(X,t) ask--->~ 

for every (x, t) E S. 
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PROOf. Because v~ is a solution of Problem I, it satisfies the identity 

f fs {~',v~+ A~(v'~)" - ~(v~)P}dxdt + f . .  ~(x,O)~b'~(x)dx = 0  

for any ~" E C2't(S) which vanishes for I x I and t large and for any k > 0. 

Because v~ = Va in S, we can pass to the limit through a subsequence: 

v k~,(x, t) ~ f '(x, t) as k'---~ oo 

uniformly on compact sets in S. Moreover,  by (H2) 

iim the(x) = A 
k ~  

for every x E R" \ {0}. Thus by the dominated convergence theorem the identity 

becomes in the limit 

f fs {~,(/ + A~Qm - ~'P}dxdt + f . .  ~(x,O)adx =O. 

Therefore  I? is the - -  unique - -  solution Va of Problem I with initial value 

~ b ( x ) - A .  Thus f ' =  Va and in view of the uniqueness of Va, the entire 

sequence {v~} must converge to Va. This completes the proof. 

We now let k ~ oo in (3.6). Then, by Lemmas 1, 2 and 3 we obtain 

Va (x, t) <= U(x, t) <- V~(x, t) in S. 

Since the lower bound holds for every A > 0 we may conclude that 

U(x, t) = V=(x, t) in S. 

Thus, by Lemma 1 and the definition of the functions uk: 

k2/(P-m~u(kx, k~)---~c * as k---~ oo 

uniformly on bounded intervals. Therefore,  if we set kx = x' and k s = t' we 

obtain, omitting the primes again, 

t~/(P-t)u(x, t)---~ c* as t---~ oo 

uniformly on sets {x ~ R "  : Ix I <= ate/o}, a >=0, t >= O. 

REMARK. For m = 1, Theorem 1 was proved in [12]. The proof presented 

here is somewhat different and seems to be simpler. 
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4. Case I I I  

In this section we assume that 

(4.1) p > m +2/n ,  

and that ~b satisfies (HI)  with 

2 
(4.2) 

p - m  
- - < a < n .  

THEOREM 2. Suppose m and p satisfy (4.1) and 4~ satisfies (HI )  and (H3) in 

which a satisfies (4.2). Let u be the solution of Problem L Then 

, , t~/Vu x , t  ~ , a s t ~  

uniformly on sets of the form 

{ x ~ R ° : l x l < - _ a t " ~ } ,  a>=O. 

Here f is the nonnegative solution ( f~  O) of the problem 

(f,.),,+ n - 1 (f . ,) ,+ 1 a 
(hi) { " =0. n >0, 

f '(0) = 0, lim ~7 °f(r/)  = A. 

For k > 0 we now define the functions 

uk(x, t) = k°u(kx,  k~t). 

They are the solutions of the problems 

(4.3) f u, = A ( u " ) -  k-~u p 
(L)  

(4.4) u (x, 0) = ~b~ (x) 

for all x E R". 

m > l  

In addition we impose a uniform bound on 4~: 

(H3) 3 B  > 0 such that 

Ixl°f (x)l<=B 

As in the introduction, we write 

y = (m - 1)a +2 .  
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in which v = a ( p  - m ) - 2  and qbk(X) = k%b(kx). Note that v > 0  by assumption 

(4.2). 
As in [16] we can show that there exists an a > 0 such that for every k > 0 

(4.5) UE(X,t)<= Wa(X,t  +-~v ) ,  

where W~ has been defined in section 2. Recall that ~b E L~(R ") is assumed 

throughout. For the proof of (4.5) (H3) is also needed. Thus, the family of 

solutions {UE } is uniformly bounded in S \ {(0, 0)} whence it is equicontinuous on 

compact subsets of S \ {(0,0)} [8]. Thus it is possible to find a subsequence {uk.} 

and a function U E C(S  \ {(0,0)}) such that 

Uk'---~ U as k'---~ o~ 

uniformly on compact subsets of S\{(0,0)}. 

By passing to the limit in the integral identity (2.1) for the solutions UE of 

Problem Ik, we shall show that U is a solution of the problem 

u, = A(u m ) in S, 

(II) [ u (x, 0) = A I x [-~ in R ~ \ {0}. 

However,  before we can do that we need some further estimates on the functions 

Uk. 

LEMMA 4. Suppose dp satisfies (H3). Then there exist positive constants C, C~ 

and C~, independent of k, such that 

fof  (i) uk (x, t)dxdt <= C~', 
i 

{ ~'~/~ if A >0,  

(ii) u~(x, t)dxdt <= C,7 + G z log ( l /z )  if A y 
, , I o g ( l + k ' r )  if A = O  

k -A if A < 0 

where q > 1 and A = n - aq + 3'. I[ 3' > 0 we need the additional assumption 

k2~ " >-_ 1. 

REMARK. As we are interested here in u~ when k is large, the condition 

k2~ " _-> 1 poses no restriction. 
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PROOF. (i) By (4.5), 

f," /B, uk(x't)dxdt<- fo" fB, W~(x,t+-~7)dxdt 
(4.6) 

_-__ f~+" f., Wo(x.s)dxas 

where e = 1/k ~ and s = t + e. Using the special form (2.2) of Wa, we find that 

f,," fB, u~(x' t)dxdt <= l OB' f ff+'s'"-~'/'ds f, "-'''f(')~"-' d'' 

where I OB, I denotes the area of OB,. Since f is a solution of Problem III, and 
hence rl~f(rl)--->A as r/--~oo, 

if-"" [(rl )~l drl <= Ks ~-"~, s > 0 t l - ]  

| 

for some positive constant K. Thus 

f" ~, uk(x,t)dxdt<=C~, 
I I 

where C = K I 0B~ I- 

Part (ii) follows in a completely analogous manner. 

L~MMA 5. Let cb have the properties (H1) and (H3). Then U is a solution of 
Problem II. 

PROOF. By the definition of a solution of Problem Ik we can write for any 

~" ~ (0, T)  and any test function ~" 

(f fs. + f fs.  + A ur-k-' u ]dxdt+ f.. ~(x,O)ckk(x)dx =O 

where Srr = ST \ S.. 

If we now let k---> oo through the subsequence {k'} and use the estimates of 

Lemma 4 we obtain eventually that 

f a,u')axa,+ f.. c, .O)A l =o. 
whence U is a solution of Problem II. 

Thus, the sequence {uk,} converges to a solution U of Problem II. As we saw in 

section 2, the unique solution of Problem II is WA. Therefore  U = Wa and, 
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using the uniqueness  of  WA again,  we may  conclude that  the ent i re  sequence  uk 

converges  to WA as k --~ oo. 

Set t = 1. T h e n  

uk(x, 1 ) =  k~u(kx, kV)-* WA(x, 1) as k -~oo, 

un i formly  on c o m p a c t  subsets  of  R n. Thus,  writ ing kx = x' and k v =  t '  and 

d ropp ing  the p r imes  again,  we obta in  

t~'~u (x, t)---, WA (x/t "~, 1) 
= f ( ~ / ; A )  as t---~ ~ 

uni formly  on sets {x E R ~ : [ x [ ~ at"~}, a >-_ O, t >= O. 

5. Case V 

In this sect ion we assume that  

(5.1) p > m + 2In, m > 1 

and that  d~ E LJ(R).  Thus ,  if d~ satisfies (H1) we assume that  a > n. 

THEOREM 3. Suppose m andp satisfy (5.1) and d~ E L~(R ' ) .  Then the solution 

u of Problem I has the property 

t"~lu(x, t ) -Eco(x, t ) l~O a s t - - - ~  

uniformly on sets of the form {x~R~: lx l<=at"~"} ,  a>=O. Here 8=  
m - 1 + (2 /n)  and Eco is the Barenblatt-Pattle solution with mass Co and Co is 

given by 

Co=,,¢k,,L'- fo® f , .  uP(x,t)dxdt. 

Let  u(x, t) be the solut ion of P rob lem I. Then ,  to p rove  T h e o r e m  3, we now 

consider  the family of  funct ions  

uk(x,t)= k~u(kx, k~t), k > 0 .  

For  every  k > 0, uk is a solut ion of the p rob l em 

u, = A ( u ~ )  - k-"u p in S, 

u(x,O) = ~bk(x) in R ~, 

where  I~ = (p - m)n - 2 > 0  and thk (x )=  k~ck(kx). 
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Let wk denote the solution of Problem Ik without the absorption term 

u, = A(u m) in S, 

u(x,O) = Sk(x) in R". 

Then, by the Comparison Principle, 

uk =< w~ in S \ {(0, 0}. 

Since 

 k(x) ll IIL,8(x) ask  o° 

t > 0, uk satisfies 

f Uk (x, t)dx 
(5.3) 

= f dkk(x)dx-k-"/o' fu (x, )dxdz 
' fO kant = dpk(x)dx- : uP(y,s)dyds 

where the spatial integrals are all taken over R". If we let k--~ oo in (5.3) we 

obtain 

f U(x,t)dx=ll4, llc- f f  f u'(y,s)dyds. 

Remembering (5.2) we can conclude that 

U(x, O) = Co8 (x) 

in the sense of distributions, it follows from a result due to Friedman and Kamin 

[10] that 

w~ --~ E~ as k -~ ~, 

where c =ll~bllL,, uniformly on compact subsets of S\{(0,0)}. Thus, the se- 

quence {uk} is locally bounded in S\{(0,0)}, and we can extract a subsequence 

{uk.} which converges to a function U E C(S\{(0,0)}) as k'---~oo uniformly on 

compact subsets of S\{(0,0)}. 

It is readily verified that U satisfies the Porous Media Equation (1.3) in the 

sense of distributions in S, and that, because U _-< Ec in S \ {(0, 0)}, 

(5.2) U(x, 0) = 0 for x ~ R" \ {0}. 

To complete the description of U at t = 0, we consider the solutions uk of 

Problem Ik for any arbitrary k > 0. Proceeding as in [14] we deduce that for any 
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where 

co = IJ It.- fo" f 
and hence that U = E,o. 

The proof of Theorem 3 is completed in the usual way (see for instance the 

proof of Theorem 2) and we omit the details. 

6. Generalization 

In this section we replace the nonlinear sink term - u ~ in Problem I by a more 

general sink term -g(u). Thus we consider the problem 

f u, = A(um) - g(u) in S 

(I*) 

u(x,0)  = Oh(x) in R" 

in which ~b is a given bounded nonnegative function and g a C ~ function such 

that 

g ( 0 ) = 0  and g ( u ) > 0  i f u > 0 .  

Depending on the behaviour of g(u)  as u--*0,  one can derive results, akin to 

those obtained in the previous sections. 

We begin with a result of the kind proved in section 3. 

THEOREM 4. Suppose [or some p > m >= 1, 

(6.1) s-P g( s )---, cr 

and suppose 4~ has the property 

Ix 12"-" 4,(x ) --" = 

Then the solution u of Problem I* satisfies 

tl/tP-~)u (x, t )---) c * o "-It{p-l) 

where c * =  ( 1 / ( p -  1)) lt0'-l), uniformly on sets 

{x ER": Ix [=< at .'0}, 

where/3 = 2(p - 1)/(p - m).  

PROOF. 

as s --, O 

as l x l~oo. 

as t --->oo, 

a_>0,  t=>0 

Let II ~ II- = a and let y( t )  be the solution of the problem 

y '  = - g(y) ,  y(O) = a. 
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Then 

and by (6.1), 

(6.2) 

By the maximum principle 

and therefore 

(6.3) 

POROUS MEDIA EQUATION 

ay d s  = 

~,~ g ( s )  t 

tl"P-J~y(t)--~ c*~r -1/tp-~) as t---~ oo. 

u(x,t)<= y ( t ) ,  

l imsup t'/¢P-')u (x, t)  <= c * cr -'/¢p-'). 

Next, choose d > 0 so that for s E (0, d), 

(6.4) g ( s ) s  -p < o" + e 

where e is some arbitrary small number, and set 

~bd (x) = min {~b (x), d}. 

Then, if ud is the solution of Problem I* with initial value ~b~, we have 

u~(x, t)<= d (6.5) 

and 

(6.6) 

By (6.4) and (6.5), 

u.(x, t)<= u(x, t). 

g(u~)u~P<= ,r + e 

whence ua satisfies the equation 

u, = A ( u m )  - c(u)u ~ 

where c(u)<= cr + e. Therefore, by the maximum principle 

ud =>w 

where w satisfies 

w, = a ( w ' ) -  ( ~  + e)w", 

w ( x , O ) =  ~bd(x) in R". 

143 
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It follows from the results of section 3 that 

t'""-')w(x, t ) ~  c*(cr + ~ )-':(~-') 

and therefore, that 

(6.7) 

Because e 

estimate. 

as t --~ oo, 

lim inf t'/(P-'>u(x, t) >= lim inf t'/(~-'>u~(x, t) 

=> c*(o" + e) -'/(p-'). 

was an arbitrary positive number (6.7) and (6.3) imply the desired 

The following result generalizes Theorem 2. 

THEOREM 5. Suppose for some a < n 

s-~'+21~)g(s)---~O ass--~O, 

m > 1 and ¢k satisfies (H1) and (H3). Then the solution u of Problem I* satisfies 

t~ '~u(x , t )~ f (  ~xl'tl/~ , A)  as t~oo  

uniformly on sets of the form {x E R" : [ x I <= at'~}, where 3' = (m - 1)a + 2, and 
f is the solution of Problem III. 

The proof differs little from that of Theorem 2, hence we omit it. 

Finally, Theorem 3 becomes for solutions of Problem I* 

THEOREM 6. Suppose 

s-''+21")g(s)~ 0 as s ~ O, 

m > 1 and ~b ~ L I(R"). Then the solution u of Problem 1" has the property 

t"~lu(x,t)-Eco(X,t)[--,O ast---,oo 

uniformly on sets of the form {xER":lx l<-at l /8"} ,  a>=O, where 6= 
m - 1 + (2/n), E~ the Barenblatt-Pattle solution with mass Co and 

Co=lldpllL,-- fo ~ ~,. g(u(x,t))dxdt. 

EXAMPLES. Suppose 

g ( u ) = u P + u  q, q > p > m + 2 / n ,  m > l  
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and ~b satisfies (H1) and (H3). Then, depending on whether a < 2 / ( p -  m), 

2 / ( p - m ) < a < n  or a > n ,  the large time behaviour of the solution u of 

Problem I* is characterized by, respectively, Theorem 4, 5 or 6. 

If 

g ( u ) = l l o g u l u  P, p > m + 2 / n ,  

Theorems 5 and 6 can be used to determine the large time behaviour of u when, 

respectively, 2/(p - m ) <  a < n or a > n. 

As in [16] we may also allow the constant A in (H1) to vary with the angle to 

of the ray along which x ----~ ~ : A = A(w).  

(HI*) For every fixed to E R", I to ] = 1 

!ira Ix I°(k(Ix I w) = A(to)  

in which A (to) = 0 ( ¢ 0). 

Proceeding as in section 4 we obtain: 

THEOREM 7. Suppose m and p satisfy (4.1) and dp satisfies (HI*) and (H3) in 
which a satisfies (4.2). Then 

t ~ l ' u ( x , t ) ~ h  ~ a s t ~ ,  

uniformly on sets of the form {x E R', Ix I <= at'l'}, a >-_ 0. Here h(~) is a positive 
solution of the problem 

~i m I~1 h(f~:l w) - -A ( t o ) .  

Let us note that the existence and uniqueness of the positive solution of 

Problem IV is ensured by the proof of Theorem 7. This result is interesting by 

itself. 

Finally, very recently the case m = 1 was studied again in [11]. In that paper, 

also a few observations were made about the case m > 1. 
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